2021年10月7日 星期四

數學及物理-ZOOM網上補習 Math, Physics ( 文憑試, A-level, IGCSE, IB, AP, 初中 )





● 為 DSE, A-level, IGCSE, IB, AP, 初中 學生提供 數學及物理 網上補習

● 多年中學教學經驗及補習經驗

● 香港大學理學士(榮譽)、香港大學研究生教育證書

● 熟悉以下科目:

   * DSE 文憑試 : 數學, M2, 物理 

   * A-level, AS-level:數學、純數、統計學、力學、物理

   * IGCSE & IB : 數學, 物理

   * AP:微積分、物理 

   * 初中:數學、科學、物理

● 學生在公開考試中取得優異成績(AS-level 數學考試 : 100% A級)

● 清楚解釋數學物理的概念及考試技巧

● 透過 Zoom  一對一網上補習

● 流利粵語及英語

● 收費 和 補習時間 可商議

 (請注意:  高年級 和 外國考試 的要求較高,學費也較高)



● Math & Physics online tutoring for DSE, A-level, IGCSE, IB, AP, junior secondary students

● Years of teaching experience in secondary schools and private tutoring

● BSc in Science (Hons) from HKU, Postgrad Cert in Education from HKU

● Familiar with the following subjects: 

   * HKDSE : Math, M2, Physics 

   * A-level, AS-level : Pure Math, Statistics, Mechanics, Physics

   * IGCSE & IB : Math, Physics

   * AP : Calculus, Physics

   * Junior Secondary: Math, Science, Physics

● Students got excellent results in public exam (100% A in AS-level Math exams)

● Explain clearly the concepts and exam skills of Math and Physics

● 1-to-1 online tutoring through Zoom

● Fluent in English, native Cantonese speaker

● Tutoring Fee and Time are negotiable

   (Please note the requirements of higher classes and foreign country exams are higher, and so are the tuition fees.)




2020年5月2日 星期六

2020 DSE Maths Paper 2 answer (詳細題解) 包括 q8, q14, q18

(詳細題解) 2020 dse maths paper 2 包括困難 q8, q18, q14, q37, q38, q39, q40, q41 .

2020 DSE Math Paper 2 answers:

01-10 CCAAB DCAAB

11-20 ADDBD BCBBD


21-30 CCBDA DCBAA


31-40 BBDCD CCAAD


41-45 DABAC



今年的 Paper 2 問題比較困難,尤其是關於圖形和圖表的問題。大多數考生認為 Q8**, Q15*, Q14**, Q18**, Q20*, Q32*, Q34*, Q35*, Q36*, Q37**, Q38**,  Q39**, Q40**, Q41**相當困難的


2020 DSE Math Paper 2 MC Q31, 2020 DSE 數學卷二答案題解 Q31



Full solutions of 2020 DSE Math Paper 2 :


2020 DSE Math Paper 2 MC Q1-Q2





















































2020 DSE Math Paper 2 MC Q3-Q4








































2020 DSE Math Paper 2 MC Q5,Q6,Q7




























































2020 DSE Math Paper 2 MC Q8


























































2020 DSE Math Paper 2 MC Q9-Q10


















































 








2020 DSE Math Paper 2 MC Q11-Q12















































2020 DSE Math Paper 2 MC Q13-Q14




  


































2020 DSE Math Paper 2 MC Q15
































2020 DSE Math Paper 2 MC Q16-Q17


















































2020 DSE Math Paper 2 MC Q18
































2020 DSE Math Paper 2 MC Q19









































2020 DSE Math Paper 2 MC Q20















































2020 DSE Math Paper 2 MC Q21













































2020 DSE Math Paper 2 MC Q22






















































2020 DSE Math Paper 2 MC Q23-24























































2020 DSE Math Paper 2 MC Q25,26,27
















































































2020 DSE Math Paper 2 MC Q28,29,30





















































































2020 DSE Math Paper 2 MC Q31













































2020 DSE Math Paper 2 MC Q32































2020 DSE Math Paper 2 MC Q33




































2020 DSE Math Paper 2 MC Q34









































2020 DSE Math Paper 2 MC Q35
























































2020 DSE Math Paper 2 MC Q36





































2020 DSE Math Paper 2 MC Q37

































2020 DSE Math Paper 2 MC Q38

























































2020 DSE Math Paper 2 MC Q39


























































2020 DSE Math Paper 2 MC Q40







2020 DSE Math Paper 2 MC Q41



































2020 DSE Math Paper 2 MC Q42-43


























































2020 DSE Math Paper 2 MC Q44-45





























































要進入" 2020 DSE 數學 Paper 1 Mock Q.12-19 (題解及Marking Scheme) "頁面,請點擊下面的圖片 :


 

要進入" 2020 DSE 數學 Paper 1 Mock Q.1-11 (題解及Marking Scheme) "頁面,請點擊下面的圖片 :




 
要進入" 2020 DSE 數學 Paper 2 Mock 答案及題解 Q.1-23 " 頁面,請點擊下面的圖片 :




要進入" 2020 DSE 數學 Paper 2 Mock 答案及題解 Q.24-45 " 頁面,請點擊下面的圖片 :





要進入 "2017 DSE數學卷二答案題解" 頁面,請點擊下面的圖片:




 



要進入 "2016 DSE Math Paper 2數學卷二答案題解" 頁面,請點擊下面的圖片: 




 







2020年4月15日 星期三

020 DSE Math Paper 1 Mock q12-19 (題解)


2020 DSE Math Paper 1 Mock (Q.12-19)
2020 DSE 數學卷一模擬考試 (題解及Marking Scheme)









2020 DSE數學考試臨近,我根據hkdse math paper 1 考試新趨勢,為考生提供免費的 2020 DSE Math Paper 1 Mock Exam, 附上 詳細題解Marking Scheme (在網頁底部),希望對考生有幫助!

大多數考生認為 Q16, Q17, Q18, Q19 是很困難的。一些考生認為 Q13, Q14 也困難。

在 Q13 的 Marking Scheme,我用顏色突顯了關鍵字,以便考生更容易理解統計學 的概念。另外,我更正了一些打字。



如果您未完成Q.1-11,
請先完成Q.1-11 (請點擊下面圖片鏈接)。
 






2020 DSE MATH PAPER 1 MOCK - SECTION A(2) (con't)

2020 DSE Math Paper 1 Mock Q12-14



12. Let f(x) be a cubic polynomial. When f(x) is divided by x – 2 , the remainder is 16 . When f(x) is divided by x + 1 , the remainder is – 65 . It is given that f(x) is divisible by 2x2 – 5x + 6 . 
設 f(x) 為三次多項式。當 f(x) 除以 x – 2 時,餘數為16。當 f(x) 除以 x + 1 時,餘數為 – 65。 已知 f(x) 能被 2x2 – 5x + 6 整除。 

(a) Find the quotient when f(x) is divided by 2x2 – 5x + 6 . 
求f(x) 除以2x2 – 5x + 6的商。    (3 marks)

(b) How many rational roots does the equation f(x) = 0 have? 

     Explain your answer.  
    方程 f(x) = 0 有多少個有理根?試解釋你的答案。 (3 marks)


13. The stem-and-leaf diagram below shows the distribution of the hourly wages (in dollars) of the workers in a group.
下面的圖顯示某組的工人的時菥(以元為單位)的分佈。
Stem (tens)     Leaf (units)
幹(十位)         葉(個位)
    4             

    5             1  s  s  3  4  4  6  7  9
    6             7  7  8
    7             4  t
 
It is given that the inter-quartile range of the distribution is $14. 

已知該分佈的四分位數間距為 $14。
 
(a)    Find  s.  求 s。                (2 marks)

(b)    It is given that the mean of the distribution is $58 and the range of the distribution exceeds $36 .
已知該分佈的平均值為 $58,且該分佈的分佈域超過 $36。

(i)  Find  r  and  t.  求 r 及 t 。
 
(ii)  Two more workers now join the group. It is found that both of the mean and the range of the distribution of the hourly wages are increased by $1. Find the hourly wages of these two workers.
現再有兩名工人加入該組。得知上述時菥的分佈的平均值及
分佈域均增加 $1。求這兩名工人各人的時菥。    (6 marks)


14. The coordinates of the points P and Q are (−1, 7) and (3, 1) respectively.
點 P 及點 Q 的坐標分別為 (−1, 7) 及 (3, 1) 。

(a) Let L be the perpendicular bisector of PQ. 設 L 為 PQ 的垂直平分線。

(i) Find the equation of L.  求 L 的方程。

(ii) Suppose that G is a point lying on L. Denote the x-coordinate of G by h. Let C be the circle which is centred at G and passes through P and Q.
假定 G 為 L 上的一點。將 G 的 x 坐標記為 h。

設 C 為一圓,其圓心為 G 且通過 P 及 Q。 
Prove that the equation of C is   證明 C 的方程為 : 
3x2 + 3y2 – 6hx – (4h+20)y + 22h – 10 = 0 .        (6 marks) 

b) The coordinates of the point R are (−3, −3). 點 R 的坐標為 (−3, −3).
Using (a)(ii), or otherwise, find the area (in terms of π) of the circle which passes through P, Q and R.   

利用(a)(ii),或其他方法,求通過 P、Q 及 R 的圓的面積 (答案以π表示)。     (3 marks) 


SECTION B (35 marks)

2020 DSE Math Paper 1 Mock Q15-19


15. An nine-digit password is formed by a permutation of 1, 2, 3, 4, 5, 6, 7, 8 and 9 .
一個九位密碼由 1、2、3、4、5、6、7、8 和 9 的排列所組成。

(a) How many different nine-digit passwords can be formed?
可組成多少個不同的九位密碼? (1 mark)

(b) If the first digit and the second digit of a nine-digit password are even numbers, how many different nine-digit passwords can be formed?
如果九位密碼的第一個位和第二個位是偶數,則可以組成多少個不同的九位密碼? (2 marks)



16. Let a and b be real numbers such that log3(3a+2b
) = 3 and log3(6a+7b) = 4 .
設 a 和 b 為實數,以使  log3(3a+2b) = 3 和 log3(6a+7b) = 4。

(a) Find  a  and  b . 求 a 和 b 。    (2 marks)

(b) The 1st term and the 2nd term of a geometric sequence are  log a  and  log b  respectively.  Find the least value of  n  such that the sum of the (n+1) th term and the (2n+1) th term of the sequence is greater than  88888(log3) .
幾何序列的 第1項 和 第1項 分別為 log a 和 log b 。求 n 的最小值,以使序列的 第(n+1)項 和 第(2n+1)項 之和 大於 88888(log3) 。    (4 marks)


17.(a) Express 1/(3+4i) in the form of a + bi , where a and b are real numbers.
將 1/(3+4i) 表成 a + bi 的形式,其中 a 及 b 均為實數。     (2 marks)
(b) The roots of the quadratic equation x2 + px + q = 0 are 50/(3+4i) and 50/(3−4i) . 二次方程 x2 + px + q = 0 的根為 50/(3+4i) 及 50/(3−4i) 。
(i) Find p and q , 求 p 及 q , 

(ii) Find the range of values of r such that the quadratic equation x2 + px + q = r2 has no real roots. 
求 r 值的範圍使得二次方程 x2 + px + q = r2 沒有實根。  (5 marks)


18. The Figure (a) shows a piece of paper card of a quadrilateral ABCD . It is given that AD = 30 cm, BC = 34 cm, CD = 54 cm, ∠ABD = 58o and ∠ADB = 65o .
圖(a) 顯示了一張四邊形ABCD的紙卡。 已知 AD = 30 cm, BC = 34 cm, CD = 54 cm, ∠ABD = 58o 及 ∠ADB = 65o














(a) Find AB . 求 AB . (2 marks)

(b) The paper card in Figure (a) is folded along BD such that the ΔABC lies on the horizontal ground and ∠ABC = 116o as shown in Figure (b).
然後將四邊形紙卡沿 BD 折疊,使 ΔABC 處於水平地面上, ∠ABC = 116o ,如圖(b)所示。











   


(i) Find AC . 求 AC .

(ii) Let M be a point lying on AD such that BM is perpendicular to AD. David claims that ∠BMC is the angle between the face ABD and the face ACD. Do you agree? Explain your answer. 
設M為AD上的一點,以使BM垂直於AD。 大衛聲稱∠BMC是平面ABD和平面ACD的交角。 你是否同意? 試解釋你的答案。        (5 marks) 




19. Let f(x) = 2x2 – (84k)x + 2k2 5k + 10 , where k is a positive constant.  R  is the vertex of the graph of  y = f(x) .  設 f(x) = 2x2 – (84k)x + 2k2 5k + 10,其中k是一個正常數。 R是 y = f(x) 的圖的頂點。

(a) Using the method of completing the square, express the coordinates of  R  in terms of k .   使用  方法,以k表示R的坐標。  (3 mark)

(b) The graph of  y = g(x)  is obtained by reflecting the graph of  y = f(x)  with respect to the x-axis and then translating the resulting graph upwards by 16 units.  Let  S  be the vertex of the graph of  y = g(x) .  Denote the origin by O .  y = g(x) 的圖是通過相對於x軸反射  y = f(x) 的圖,然後將所得圖向上平移16個單位而獲得的。設S為  y = g(x) 的圖的頂點。用O表示原點。

(i) Express the coordinates of  S  in terms of k . 用k表示S的坐標。

(ii) Denote the point (12, 16) by H . 用H表示點 (12, 16)。

Find k such that the area of the circle passing through H, O and R is the least.  求 k 使通過H,O和R的圓的面積最小。

Are H, O, R and S concyclic? Explain your answer.
H,O,R和S是共圓嗎?試解釋你的答案。


Find the coordinates of the orthocentre of  ΔHOR  and the coordinates of the orthocentre of  ΔHOS . 
ΔHOR的垂心的坐標 和 ΔHOS的垂心的坐標。     (9 mark) 




2020 DSE Math Paper 1 Mock: Solutions and Marking Scheme are given below:


12(a) Let ax + b be the required quotient.        1M
Then, f(x) = (ax + b)(2x2 – 5x + 6)
Note that f(2) = 16  and  f(-1) = -65 .         1M (for either one)
(a(2) + b) (2(2)2 – 5(2) + 6) = 16 and
(a(-1) + b) (2(-1)2 – 5(-1) + 6) = -65
So 2a + b = 4 and -a + b = -5
Solving, a = 3 and b = -2     1A (for both correct)
Thus, required quotient is 3x – 2 .

(b) f(x) = 0
(3x – 2)(2x2 – 5x + 6) = 0 ( by (a) )
3x – 2 = 0 or 2x2 – 5x + 6 = 0
(-5)2 - 4(2)(6)
  1M
= -23 < 0
So the equation 2x2 – 5x + 6 = 0 does not have real roots.
  1M
Note that 2/3 is a rational root of f(x) = 0 .
Thus the equation f(x) = 0 has 1 rational root.
  1A



13(a) Inter-quartile range = $14

67 – (50+s) =14   1M
s = 17 – 14 = 3 
    1A

(b) (i) Range > $36

(70 + t) – (40 + r) > 36   1M (for either one) 
So, t – r > 6 … (1)
58(16) = (40+r)+42+51+2(53)+53+2(54)

              +56+57+59+2(67)+68+74+(70+t)
So, r + t = 10 … (2)
(1)+(2), 2t > 16, so t > 8
So, t = 9 and r =
1   1A (for both correct)
 
(ii) Let $a and $b be hourly wages of the two workers, where  a ≤ b .
Range = 79 - 41 = $38
New range = 38 + 1 = $39
a + b = (58+1)(16+2) – 58(16) 
  1M
a + b = 134 


case 1: a = 40    1M 
Since a + b = 134 ,
so b = 134 – 40 = 94
so new range = 94 – 40 = 54

But it is impossible.

case 2: 41
a ≤ 80
In this case, b = 80  1A

Since a + b = 134 ,
so a = 134 80 = 54   1A
Thus, the hourly wages of the 2 workers are $54 and $80.


14(a)(i) Mid-point of PQ = (1, 4)
Slope of PQ = (7
1)/(13)     1M 
                           =
3/2
Equation of L is
y
4 = (2/3)(x 1)    1M 
2x 2 = 3y 12
2x
3y + 10 = 0      1A 

(ii) Let k be the y-coordinate of G .
By (a)(i), 2h – 3k + 10 = 0
k = (2h + 10)/3 
    1M 
The equation of C is
(x – h)2 + (y – k)2 = (3 – h)2 + (1 – k)2
    1M  
x2 - 2hx + h2 + y2 - 2ky + k2 = 9 - 6h + h2 + 1 - 2k + k2
x2 + y2 - 2hx - 2y(2h + 10)/3 = 9 - 6h + 1 - 2(2h + 10)/3
3x2 + 3y2 – 6hx – (4h+20)y + 22h – 1
0 = 0 .   1 (must give reasons)
 

(b) Denote the circle which passes through P, Q and R by C.
Centre of C lies on the perpendicular bisector of PQ.
Let h be the x-coordinate of the centre of C.
By (a)(ii), 

3(−3)2 + 3(−3)2 – 6h(−3) – (4h+20)(−3) + 22h – 10 = 0 .  1M (for using a(ii))  
54 + 18h + 12h + 60 + 22h - 10 = 0
So, h =
2
Equation of C is x2 + y2 + 4x – 4y – 18 = 0 . 

Required area = π [ (-2)2 + 22 –(18) ]    1M
        = 26π       1A



15(a) The required number
=
9P9 = 362 880   1A

(b) The required number
= (
4P2)(7P7)   1M
= 60 480
     1A

 
16(a) 3a + 2b = 33 = 27 and 6a + 7b = 34 = 81    1M (for either one)
a = 3 and b = 9      1A (for both correct)

(b) Let T(n) be nth term of the geometric sequence.
T(1) = log3 and T(2) = log9 = 2log3   1M (for either one)
The common ratio is 2 .
(log3)(2)n + (log3)(2)2n > 88888(log3)
(2n)2 + (2n) – 88888 > 0  
1M 
2n < -298.6413255 or 2n > 297.6413255
log2n > log(297.6413255)
   1M
nlog2 > log(297.6413255)
n > 8.217431039
Note that n is an integer.
Thus, the least value of n is 9 .
    1A


17(a) 1 / (3+4i)
= 1 / (3+4i) x (3−4i) / (3−4i)
   1M
= 3/25 − 4i/25       1A

(b)(i) 留意 50/(3+4i) = 6−8i 及 50/(3−4i) = 6+8i 。
兩根之和
= 50/(3+4i) + 50/(3−4i)   1M
(任何一項)
= (6-8i) + (6+8i)
= 12         1A
(任何一項)

兩根之積
= 50/(3+4i) x 50/(3−4i) = 100

因此,可得 p = −12q = 100   1A 給兩項均正確

(ii) 當方程 x2 + px + q = r2 ,
i.e. x2 − 12x + 100 = r2 沒有實根時,可得 Δ < 0
故此,可得 (-12)2 – 4(1)(100 – r2) < 0    1M
36 < 100 – r2
r2 < 64
因此,可得 –8 < r < 8     1A


18(a)  AB / sin∠ADB = AD / sin∠ABD    1M
AB / sin65o = 30 / sin58o
AB ≈ 32.06095708
≈ 32.1 cm
     1A

(b)(i) AC2 = AB2 + BC2 – 2(AB)(BC)(cos∠ABC)    1M
≈ (32.06095708)2 + 342 – 2(32.06095708)(34)(cos∠116o)
AC ≈ 56.0322913
≈ 56.0 cm      1A
 

(ii) In ΔABD, ∠DAB = 180o – 58o – 65o = 57o
 

BM = AB sin∠DAB
≈ 32.06095708sin57o
26.88858108 cm
 

AM = ABcos∠DAB
≈ 32.06095708cos57o
17.46164872 cm

(We need to find ∠CDA first, in order to find CM.)
In ΔACD, 

cos∠CAD = (AD2 + AC2 – CD2) / ( 2(AD)(AC) )
≈ (302 + 56.03229132 – 542) / (2 x 30 x 56.0322913) 
  1M 
∠CAD ≈ 70.47505057o
 

CM2 = AM2 + AC2 – 2(AM)(AC)cos∠CAD
≈ (17.46164872)2 + (56.0322913)2 – 2(17.46164872)(56.0322913)(cos70.47505057o)
CM ≈ 52.825369 cm
 

CM2 + AM 2 ≈ (52.825369) 2 + (17.46164872) 2
≈ 3095.428786
AC2
(56.0322913)2 3139.617668 

So, CM2 + AM2 ≠ AC 2
So, ∠AMC is not a right angle.   1M
So, ∠BMC is not the angle between the face ABD and the face ACD.
Thus, the claim is not agreed.    1A (must give all reasons)


19(a) f(x) = 2x2 – (8–4k)x + 2k2 – 5k + 10
f(x) = 2[x2 – (4–2k)x + (2–k) 2 – (2–k)2] + 2k2 – 5k + 10
f(x) = 2[x2 – (2–k) 2]2 – 2(2–k)2 + 2k2 – 5k + 10     

                          1M (for completing the square)
= 2( x – (2–k) ) 2 + 3k + 2       1M
Coordinates of R are (2–k , 3k + 2)      1A

(b)(i) Note that -3k-2+16 = 14-3k
Coordinates of S are (2–k , 14–3k)     1A

(ii) Note that the area of circle passing through H and O is the least when HO is a diameter of the circle.    1M
If R lies on the circle, then ∠HRO = 90o .
[(3k + 2 – 0) / (2 – k – 0)] x [(3k + 2 – 16) / (2 – k – 12)] = –1     1M+1A
[(3k + 2) (3k – 14)] / [(2 – k) (– k – 10)] = –1
(3k + 2) (3k – 14) = (2 – k) (k + 10)
10k2 – 28k – 48 = 0
k = 4 or k = –6/5 (rejected)      1A
Thus, the area of the circle passing through H, O and R is the least when k = 4 .

When k = 4, coordinates of S are (–2 , 2) .
The product of slope of OS and slope of HS
= [(2 – 0) / (– 2 – 0)] x [(2 – 16) / (– 2 – 12)]     1M
= –1
So, ∠HSO = 90o
Therfore, when k = 4, ∠HRO = 90o, and HO is a diameter of the circle passing through H, O and R .
So, when k = 4, S lies on the circle passing through H, O and R .
So, H, O, R and S are concyclic. 1A (must give all reasons)

Note that coordinates of R are (–2 , 14) when k = 4 .
In ΔHOR, ∠HRO = 90o, so R is the orthocentre of ΔHOR .                                      1M (for either one)
So, coordinates of the orthocentre of ΔHOR are (–2 , 14) .
In ΔHOS, ∠HSO = 90o, so S is the orthocentre of ΔHOS .
So, coordinates of the orthocentre of ΔHOS are (–2 , 2)

                                                        1A (for both correct)



 
更多閱讀 :


要進入"2020 DSE Math Paper 1 Mock Q.1-11 (題解及Marking Scheme) "頁面,請點擊下面的圖片 :







要進入"2020 DSE數學卷二 Mock答案及題解 Q.1-23" 頁面 ,請點擊下面的圖片:





要進入"2020 DSE數學卷二 Mock答案及題解 Q.24-45" 頁面 ,請點擊下面的圖片:






要進入 "2017 DSE數學卷二答案題解" 頁面,請點擊下面的圖片:







要進入 "2016 DSE數學卷二答案題解" 頁面,請點擊下面的圖片: